61. Fully nonlinear Koiter shell model#
[M. Neunteufel and J.S.: The Hellan-Herrmann-Johnson method for nonlinear shells. Computers & Structures, ‘19
[M. Neunteufel and J.S.: Avoiding membrane locking with Regge interpolation, CMAME, ‘21
M. Neunteufel and J.S.: The Hellan-Herrmann-Johnson and TDNNS method for linear and nonlinear shells
Bending energy:
\[
\int | \nabla^2 u_i n_i |^2
\]
with physical normal vector \(n = \operatorname{Cof} (F) n_{ref}\). Discretized by the Hellan-Herrmann-Johnson method. Distributional jump term \([\partial_n w]\) is now angle between deformed faces.
Membrane energy with reduction operator for tangential strain:
\[
\int W( I_{cc} C_{tt}(u) )
\]
from ngsolve import *
from ngsolve.webgui import Draw
from time import sleep
thickness = 0.1 # thickness
L = 12
W = 1
E, nu = 1.2e6, 0
from netgen.occ import *
shape = Rectangle(L,W).Face()
shape.edges.Min(X).name="left"
shape.edges.Max(X).name="right"
shape.edges.Min(Y).name="bottom"
shape.edges.Max(Y).name="top"
mesh = Mesh(OCCGeometry(shape).GenerateMesh(maxh=0.5))
# Draw (mesh)
regge = True # False -> membrane locking
order = 2
fes1 = HDivDivSurface(mesh, order=order-1, discontinuous=True)
fes2 = VectorH1(mesh, order=order, dirichletx_bbnd="left", dirichlety_bbnd="left|bottom", dirichletz_bbnd="left")
fes3 = HDivSurface(mesh, order=order-1, orderinner=0, dirichlet_bbnd="left")
if regge:
fes4 = HCurlCurl(mesh, order=order-1, discontinuous=True)
fes = fes2*fes1*fes3*fes4*fes4
u,sigma,hyb,C,R = fes.TrialFunction()
sigma, hyb, C, R = sigma.Trace(), hyb.Trace(), C.Trace(), R.Operator("dualbnd")
else:
fes = fes2*fes1*fes3
u,sigma,hyb = fes.TrialFunction()
sigma, hyb = sigma.Trace(), hyb.Trace()
fesVF = VectorFacetSurface(mesh, order=order)
b = fesVF.TrialFunction()
gfclamped = GridFunction(FacetSurface(mesh,order=0))
gfclamped.Set(1,definedon=mesh.BBoundaries("left"))
solution = GridFunction(fes, name="solution")
averednv = GridFunction(fesVF)
averednv_start = GridFunction(fesVF)
nsurf = specialcf.normal(mesh.dim)
t = specialcf.tangential(mesh.dim)
nel = Cross(nsurf, t)
Ptau = Id(mesh.dim) - OuterProduct(nsurf,nsurf)
Ftau = grad(u).Trace() + Ptau
Ctau = Ftau.trans*Ftau
Etautau = 0.5*(Ctau - Ptau)
nphys = Normalize(Cof(Ftau)*nsurf)
tphys = Normalize(Ftau*t)
nelphys = Cross(nphys,tphys)
Hn = CF( (u.Operator("hesseboundary").trans*nphys), dims=(3,3) )
cfnphys = Normalize(Cof(Ptau+grad(solution.components[0]))*nsurf)
cfn = Normalize(CF( averednv.components ))
cfnR = Normalize(CF( averednv_start.components ))
pnaverage = Normalize( cfn - (tphys*cfn)*tphys )
bfF = BilinearForm(fesVF, symmetric=True)
bfF += Variation( (0.5*b*b - ((1-gfclamped)*cfnphys+gfclamped*nsurf)*b)*ds(element_boundary=True))
rf = averednv.vec.CreateVector()
bfF.AssembleLinearization(averednv.vec)
invF = bfF.mat.Inverse(fesVF.FreeDofs(), inverse="sparsecholesky")
def UpdateNormal():
bfF.Apply(averednv.vec, rf)
bfF.AssembleLinearization(averednv.vec)
invF.Update()
averednv.vec.data -= invF*rf
UpdateNormal()
averednv_start.vec.data = averednv.vec
gradn = specialcf.Weingarten(3) #grad(nsurf)
def Material(mat, E, nu):
return E/(1-nu**2)*((1-nu)*InnerProduct(mat,mat)+nu*Trace(mat)**2)
def MaterialInv(mat, E, nu):
return (1+nu)/E*(InnerProduct(mat,mat)-nu/(2*nu+1)*Trace(mat)**2)
bfA = BilinearForm(fes, symmetric=True, condense=True)
# bending energy
bfA += Variation(-6/thickness**3*MaterialInv(sigma, E, nu)*ds ).Compile()
bfA += Variation(InnerProduct(sigma, Hn + (1-nphys*nsurf)*gradn)*ds ).Compile()
bfA += Variation( -(acos(nel*cfnR)-acos(nelphys*pnaverage)-hyb*nel)*(sigma*nel)*nel*ds(element_boundary=True) ).Compile()
# membrane energy
if regge:
bfA += Variation( 0.5*thickness*Material(C, E, nu)*ds )
bfA += Variation( InnerProduct(C-Etautau, R)*ds(element_vb=BND) )
bfA += Variation( InnerProduct(C-Etautau, R)*ds(element_vb=VOL) )
else:
bfA += Variation( 0.5*thickness*MaterialNorm(Etautau, E, nu)*ds )
Apply moment to right edge:
par = Parameter(0.0)
moment = IfPos(x-L+1e-6, 1, 0)*50*pi/3
bfA += Variation( -par*moment*(hyb*nel)*ds(element_boundary=True) )
numsteps=10
scene = Draw(solution.components[0], mesh, deformation=solution.components[0])
with TaskManager():
for steps in range(0,numsteps):
par.Set((steps+1)/numsteps)
print("Loadstep =", steps+1, ", F/Fmax =", (steps+1)/numsteps*100, "%")
UpdateNormal()
solvers.Newton(bfA, solution, inverse="sparsecholesky", printing=False, maxerr=2e-10)
scene.Redraw()
sleep(0.5)
Loadstep = 1 , F/Fmax = 10.0 %
Loadstep = 2 , F/Fmax = 20.0 %
Loadstep = 3 , F/Fmax = 30.0 %
Loadstep = 4 , F/Fmax = 40.0 %
Loadstep = 5 , F/Fmax = 50.0 %
Loadstep = 6 , F/Fmax = 60.0 %
Loadstep = 7 , F/Fmax = 70.0 %
Loadstep = 8 , F/Fmax = 80.0 %
Loadstep = 9 , F/Fmax = 90.0 %
Loadstep = 10 , F/Fmax = 100.0 %