60. Naghdi shell#
Joint work with M. Neunteufel [‘19, ‘21], Phd thesis Neunteufel (2021)
Geometric model and meshing. left surface only needed for boundary conditions.
from netgen.csg import *
from ngsolve import *
from ngsolve.webgui import Draw
from netgen.occ import *
cyl = Cylinder(Axes((0,0,0), X, Y), r=0.4, h=1).faces.Nearest((0.5,0.4,0))
cyl.edges.Min(X).name="left"
mesh = Mesh(OCCGeometry(cyl).GenerateMesh(maxh=0.1)).Curve(3)
Draw (mesh);
60.1. unknown field variables:#
displacement \(u \in [H^1(S)]^3\)
linearized rotation \(\beta \in H(\text{curl},S)\)
bending moments \(\sigma \in H(\text{div div},S)\)
order = 3
fes1 = HDivDivSurface(mesh, order=order-1)
fes2 = VectorH1(mesh, order=order, dirichlet_bbnd="left")
fes3 = HCurl(mesh, order=order-1, dirichlet_bbnd="left")
fes = fes1 * fes2 * fes3
sigma,u,beta = fes.TrialFunction()
tau,v,delta = fes.TestFunction()
sigma = sigma.Trace()
tau = tau.Trace()
beta = beta.Trace()
delta = delta.Trace()
gradv = Grad(v).Trace()
gradu = Grad(u).Trace()
nsurf = specialcf.normal(3)
t = specialcf.tangential(3)
nel = Cross(nsurf, t)
ngradv = gradv.trans*nsurf
ngradu = gradu.trans*nsurf
sigman = sigma*nel
taun = tau*nel
def tang(u):
return (u*t)*t
thickness = 0.1
Membrane energy with primal method for displacement vector \(u\):
\[
\int_S W(C_{tt}(u))
\]
Shear energy, \(\beta\) the linearized rotation in tangential plane:
\[
\int_S | n^T \nabla u - \beta |^2
\]
Bending energy (with TDNNS mixed method):
\[
t^2 \int_S | \varepsilon_{tt}(\beta) |^2
\]
a = BilinearForm(fes)
bending = -1/thickness**2*InnerProduct(sigma,tau)*ds + \
(-div(sigma)*delta - div(tau)*beta)*ds + \
(sigman * tang(delta) + taun*tang(beta))*ds(element_boundary=True)
shear = (ngradu-beta)*(ngradv-delta)*ds
a += (bending+shear).Compile()
Pt = Id(3) - OuterProduct(nsurf, nsurf)
Ft = gradu + Pt
Ctt = Ft.trans * Ft
Ett = Ctt - Pt
a += Variation((InnerProduct(Ett,Ett)*ds).Compile())
factor = Parameter(0.1)
a += Variation((-factor*y*u[1]*ds).Compile())
gfu = GridFunction(fes)
Increase the load step-wise, solve the non-linear problem by Newton’s method. First and second order derivatives are computed by automatic differentiation.
sceneu = Draw(Norm(gfu.components[0]), mesh, deformation=gfu.components[1])
from ngsolve.solvers import NewtonMinimization
for loadstep in range(4):
print ("loadstep ", loadstep)
factor.Set (3*(loadstep+1))
with TaskManager():
NewtonMinimization (a, gfu, inverse="sparsecholesky", printing=False)
sceneu.Redraw()
loadstep 0
loadstep 1
loadstep 2
loadstep 3