20.4. The electric field in a capacitor#
We model electrostatics. The field variables are
symbol |
unit |
meaning |
---|---|---|
\(\phi\) |
V |
electrostatic potential |
\(\rho\) |
\(\frac{As}{m^3}\) |
charge density |
\(E\) |
\(\frac{V}{m}\) |
electric field |
\(D\) |
\(\frac{As}{m^2}\) |
displacement current density |
where \(V\) is Volt and \(A\) is Ampere. The equations are
The material parameter \(\varepsilon\) is called dielectric parameters, and is often written as \(\epsilon = \varepsilon_r \varepsilon_0\), with \(\varepsilon_0 = 8.854 \cdot 10^{-12} \frac{As}{Vm}\) is the dielectric constant of vacuum. Sign convention follows the tradition.
Combining the equations we obtain
Possible boundary conditions are
Dirichlet boundary conditions for the potential \(\phi\)
Neumann boundary conditions for \(D_n = \varepsilon \frac{\partial \phi}{\partial n}\)
from ngsolve import *
from netgen.occ import *
from ngsolve.webgui import Draw
def MakeMesh():
shape = MoveTo(0,0).RectangleC(20,20) \
.MoveTo(0,1).RectangleC(5,0.5, "el1").Reverse() \
.MoveTo(0,-1).RectangleC(5,0.5, "el2").Reverse() \
.Face()
shape.edges["el.*"].vertices.hpref=1
mesh = Mesh(OCCGeometry(shape, dim=2).GenerateMesh(maxh=2))
return shape,mesh
We model the geometry and generate the mesh for a plate capacitor:
geo, mesh = MakeMesh()
Draw (geo)
Draw (mesh);
Assemble and solve the finite element system. The potential at the electrodes is prescribed as Dirichlet boundary condition (+1 Volt and -1 Volt at upper and lower electrodes).
eps0 = 8.854e-12
def SolveProblem(mesh):
fes = H1(mesh, order=5, dirichlet="el.*")
u,v = fes.TnT()
gfu = GridFunction(fes)
gfu.Interpolate( mesh.BoundaryCF( {"el1":1, "el2":-1 }), mesh.Boundaries(".*"))
a = BilinearForm(eps0*grad(u)*grad(v)*dx).Assemble()
inv = a.mat.Inverse(freedofs=fes.FreeDofs())
gfu.vec.data -= inv@a.mat * gfu.vec
return gfu
gfu = SolveProblem(mesh)
ea = { "euler_angles" : [-70,0,-40]}
Draw (gfu, deformation=True, scale=5, **ea);
The electric field is the gradient:
Draw (Norm(grad(gfu)), mesh, order=3, deformation=True, min=0, max=3, **ea);
To resolve the singularities at the corners we apply strong mesh refinement. We use RefineHP
:
geo, mesh = MakeMesh()
mesh.RefineHP(3, 0.25)
gfu = SolveProblem(mesh)
Draw (gfu, deformation=True, scale=5, **ea)
Draw (Norm(grad(gfu)), mesh, order=3, deformation=True, min=0, max=3, **ea);
To avoid such singularities, we can smooth the sharp corners:
def MakeMeshRounded():
square = MoveTo(0,0).RectangleC(20,20).Face()
el1 = MoveTo(0,1).RectangleC(5,0.5).Face()
el1 += MoveTo(2.5,1).Circle(0.25).Face()
el1 += MoveTo(-2.5,1).Circle(0.25).Face()
el1.edges.name="el1"
el2 = MoveTo(0,-1).RectangleC(5,0.5).Face()
el2 += MoveTo(2.5,-1).Circle(0.25).Face()
el2 += MoveTo(-2.5,-1).Circle(0.25).Face()
el2.edges.name="el2"
geo = square - el1 - el2
mesh = Mesh(OCCGeometry(geo, dim=2).GenerateMesh(maxh=2))
return geo,mesh
geo, mesh = MakeMeshRounded()
Draw(geo)
Draw (mesh);
gfu = SolveProblem(mesh)
Draw (gfu, deformation=True, scale=5, **ea)
Draw (Norm(grad(gfu)), mesh, order=3, deformation=True, min=0, max=2, **ea);
We still see spikes at the vertices of the mesh. To avoid such home-made singularities we can curve the elements using the Curve
function.
geo, mesh = MakeMeshRounded()
mesh.Curve(5)
Draw (mesh)
gfu = SolveProblem(mesh)
Draw (gfu, deformation=True, scale=5, **ea)
Draw (Norm(grad(gfu)), mesh, order=3, deformation=True, min=0, max=3, **ea);
20.4.1. Exercises:#
Compute the total energy in the electrostatic field \(\tfrac{1}{2} \int \varepsilon | E |^2\)
Compute the total charge at one electrode \(\int_{\Gamma_{El1}} D_n\)
Visualize the Neumann data, the surface charge density \(\rho_s = D_n\)
Use symmetry of the problem to reduce the computation to a quarter of the domain
Model the capacitor in 3D
Use the following trick to compute Neumann data: Define the linear functional on \(H^1\).
By properties of the solution, it vanishes for \(\psi \in H_0^1\). Perform integration by parts backwards to obtain