23. Navier Stokes Equations:#
We consider the time-dependent incompressible Navier Stokes equations:
Find velocity \(u : \Omega \times [0,T] \rightarrow {\mathbb R}^d\) and pressure \(p : \Omega \times [0,T] \rightarrow {\mathbb R}\) such that
\[\begin{split}
\begin{array}{ccccl}
\frac{\partial u}{\partial t} - \nu \Delta u + u \nabla u & + & \nabla p & = & f \\
\operatorname{div} u & & & = & 0
\end{array}
\end{split}\]
The equation contains several challenges:
It is a time dependent equation. We will use a combinatiaon of the implicit and explicit Euler method.
A simplified model for incompressible stationary flow are Stokes’ equations:
\[\begin{split} \begin{array}{ccccl} - \nu \Delta u + & + & \nabla p & = & f \\ \operatorname{div} u & & & = & 0 \end{array} \end{split}\]It requires a well balanced combination of finite element spaces for velocity \(u\) and pressure \(p\).
It contains a transport equation for moment (German: Impuls) density:
\[ \frac{\partial u}{\partial t} + u \nabla u = \tilde f \]