\[\begin{eqnarray*}
  H(dd) 
  & := &
         \{ \sigma \in L_2 (\mathbb{S})
         : \operatorname{div} \operatorname{div} \, \sigma  \in H^{-1}(\mathbb{R}) \}  \\
  H(cd)  & := & \{ \sigma \in L_2(\mathbb{T})
                                       : \operatorname{curl}
                          \operatorname{div} \sigma \in H^{-1}(\mathbb{V}) \}  \\
  H(cc) & := & \{ \sigma \in L_2(\mathbb{S}) : \operatorname{curl}^T
                            \operatorname{curl} \sigma \in H^{-1}(\mathbb{S}) \}
 \end{eqnarray*}\]
\[\begin{eqnarray*}
   V_{dd}^k & = & \{ \sigma \in L_2(\mathbb{S}) : {\sigma}_{|T}  \in
                  P^k(\mathbb{S}),  \sigma_{nn} \; \text{continuous} \} \\
   V_{cd}^k & = & \{ \sigma \in L_2(\mathbb{T}) : {\sigma}_{|T}  \in
                  P^k(\mathbb{T}),  \sigma_{nt} \; \text{continuous} \} \\
   V_{cc}^k & = & \{ \sigma \in L_2(\mathbb{S}) : {\sigma}_{|T}  \in P^k(\mathbb{S}),  \sigma_{tt} \; \text{continuous} \}
 \end{eqnarray*}\]
Can be mapped from a reference-element with Piola / covariant transformations from the left and the right.
12.1. Applications:
TDNNS method for elasticity:
Find stress \(\sigma \in V_{dd}^k\) and displacement \(u \in {\mathcal N}^k\)
\[\begin{split}
  \begin{array}{ccccll}
  \int A \sigma : \tau  & + & \left< \operatorname{div} \tau, u \right>
  & = & 0 & \; \forall \, \tau \in V_{dd} \\[0.5em]
  \left< \operatorname{div} \sigma, v \right> & & & = & f(v)
          & \; \forall \, v \in {\mathcal N}
  \end{array}
\end{split}\]
Astrid Pechstein (aka Sinwel) Phd-thesis and joint work [‘11,’12,’18,’21]
robust for thin structures.
MCS method for Stokes:
Find \(\sigma \in V_{cd}^k\), \(u \in {\mathcal BDM}^k\), and \(p \in
P^{k-1}\):
\[\begin{split}
  \begin{array}{ccccll}
  \int A \sigma : \tau  & + & \left< \operatorname{div} \tau,
                                                   u \right> + (\operatorname{div}
                                                   u, q)
  & = & 0 & \; \forall \, \tau \in V_{cd}, \, \forall \, q \in P^{k-1} \\[0.5em]
  \left< \operatorname{div} \sigma, v \right> +(\operatorname{div} v,p) & & & = & f(v)
          & \; \forall \, v \in {\mathcal BDM}^k
  \end{array}
\end{split}\]
Philip Lederer Phd-thesis, P. Lederer-J. Gopalakrishnan-JS [‘20, ‘20]
exact divergence free discrete velocities, pressure-robust
Hellan-Herrmann-Johnson (HHJ) method for the Kirchhoff plate:
[’60s and ’70s, Arnold+Brezzi ‘85, I. Comodi ‘89]
Find bending moments \(\sigma \in V_{dd}^k\) and vertical deflection \(w \in {\mathcal L}^{k+1}\):
\[\begin{split}
  \begin{array}{ccccll}
  \int A \sigma : \tau  & + & \left< \operatorname{div} \tau, \nabla w \right>
  & = & 0 & \; \forall \, \tau \in V_{dd}^k \\[0.5em]
  \left< \operatorname{div} \sigma, \nabla v \right> & & & = & f(v)
          & \; \forall \, v \in {\mathcal L}^{k+1}
  \end{array}
  \end{split}\]
Combination of HHJ and TDNNS for Reissner Mindlin
[A. Pechstein-JS ‘17]:
Find \(\sigma \in V_{dd}^k\) and \(w \in {\mathcal L}^{k+1}\), \(\beta \in {\mathcal N}^{k}\):
\[\begin{split}
  \begin{array}{ccccll}
  \int A \sigma : \tau  & + & \left< \operatorname{div} \tau,  \beta \right>
  & = & 0 & \; \forall \, \tau \in V_{dd}^k \\[0.5em]
    \left< \operatorname{div} \sigma, \delta \right> &  -
                            & \tfrac{1}{t^2} (\nabla w
                              - \beta, \nabla v - \delta)  & = & f(v)
          & \; \forall \, v \in {\mathcal L}^{k+1}, \; \forall \, \delta \in  {\mathcal N}^k,
  \end{array}
  \end{split}\]
Free of locking, and for \(t \rightarrow 0\) the discrete RM solution
converges to  the Kirchhoff solution.