Matrix-valued Finite Elements

12. Matrix-valued Finite Elements#

Matrix-valued function spaces

\[\begin{eqnarray*} H(dd) & := & \{ \sigma \in L_2 (\mathbb{S}) : \operatorname{div} \operatorname{div} \, \sigma \in H^{-1}(\mathbb{R}) \} \\ H(cd) & := & \{ \sigma \in L_2(\mathbb{T}) : \operatorname{curl} \operatorname{div} \sigma \in H^{-1}(\mathbb{V}) \} \\ H(cc) & := & \{ \sigma \in L_2(\mathbb{S}) : \operatorname{curl}^T \operatorname{curl} \sigma \in H^{-1}(\mathbb{S}) \} \end{eqnarray*}\]

with \(\mathbb{V} = \mathbb{R}^3\), \(\mathbb{S} = \{ \sigma \in \mathbb{R}^{3\times 3} : \sigma = \sigma^T \}\), \(\mathbb{T} = \{ \eta \in \mathbb{R}^{3 \times 3} : \operatorname{tr} \eta = 0 \}\)

Finite Elements

\[\begin{eqnarray*} V_{dd}^k & = & \{ \sigma \in L_2(\mathbb{S}) : {\sigma}_{|T} \in P^k(\mathbb{S}), \sigma_{nn} \; \text{continuous} \} \\ V_{cd}^k & = & \{ \sigma \in L_2(\mathbb{T}) : {\sigma}_{|T} \in P^k(\mathbb{T}), \sigma_{nt} \; \text{continuous} \} \\ V_{cc}^k & = & \{ \sigma \in L_2(\mathbb{S}) : {\sigma}_{|T} \in P^k(\mathbb{S}), \sigma_{tt} \; \text{continuous} \} \end{eqnarray*}\]

Can be mapped from a reference-element with Piola / covariant transformations from the left and the right.

12.1. Applications:#

TDNNS method for elasticity:

Find stress \(\sigma \in V_{dd}^k\) and displacement \(u \in {\mathcal N}^k\)

\[\begin{split} \begin{array}{ccccll} \int A \sigma : \tau & + & \left< \operatorname{div} \tau, u \right> & = & 0 & \; \forall \, \tau \in V_{dd} \\[0.5em] \left< \operatorname{div} \sigma, v \right> & & & = & f(v) & \; \forall \, v \in {\mathcal N} \end{array} \end{split}\]

Astrid Pechstein (aka Sinwel) Phd-thesis and joint work [‘11,’12,’18,’21]

robust for thin structures.

MCS method for Stokes:

Find \(\sigma \in V_{cd}^k\), \(u \in {\mathcal BDM}^k\), and \(p \in P^{k-1}\):

\[\begin{split} \begin{array}{ccccll} \int A \sigma : \tau & + & \left< \operatorname{div} \tau, u \right> + (\operatorname{div} u, q) & = & 0 & \; \forall \, \tau \in V_{cd}, \, \forall \, q \in P^{k-1} \\[0.5em] \left< \operatorname{div} \sigma, v \right> +(\operatorname{div} v,p) & & & = & f(v) & \; \forall \, v \in {\mathcal BDM}^k \end{array} \end{split}\]

Philip Lederer Phd-thesis, P. Lederer-J. Gopalakrishnan-JS [‘20, ‘20]

exact divergence free discrete velocities, pressure-robust

Hellan-Herrmann-Johnson (HHJ) method for the Kirchhoff plate:

[’60s and ’70s, Arnold+Brezzi ‘85, I. Comodi ‘89]

Find bending moments \(\sigma \in V_{dd}^k\) and vertical deflection \(w \in {\mathcal L}^{k+1}\):

\[\begin{split} \begin{array}{ccccll} \int A \sigma : \tau & + & \left< \operatorname{div} \tau, \nabla w \right> & = & 0 & \; \forall \, \tau \in V_{dd}^k \\[0.5em] \left< \operatorname{div} \sigma, \nabla v \right> & & & = & f(v) & \; \forall \, v \in {\mathcal L}^{k+1} \end{array} \end{split}\]

Combination of HHJ and TDNNS for Reissner Mindlin

[A. Pechstein-JS ‘17]:

Find \(\sigma \in V_{dd}^k\) and \(w \in {\mathcal L}^{k+1}\), \(\beta \in {\mathcal N}^{k}\):

\[\begin{split} \begin{array}{ccccll} \int A \sigma : \tau & + & \left< \operatorname{div} \tau, \beta \right> & = & 0 & \; \forall \, \tau \in V_{dd}^k \\[0.5em] \left< \operatorname{div} \sigma, \delta \right> & - & \tfrac{1}{t^2} (\nabla w - \beta, \nabla v - \delta) & = & f(v) & \; \forall \, v \in {\mathcal L}^{k+1}, \; \forall \, \delta \in {\mathcal N}^k, \end{array} \end{split}\]

Free of locking, and for \(t \rightarrow 0\) the discrete RM solution converges to the Kirchhoff solution.

12.2. Hypercomplex#

Apply differential operators row-wise and column-wise:

tesla

started from discussions with Doug, Kaibo, and Jay
WIP: distributional finite elements, n-dimensional case